Sites of allergic airway smooth muscle remodeling and hyperresponsiveness are not associated in the rat.
نویسندگان
چکیده
The cause-and-effect relationship between airway smooth muscle (ASM) remodeling and airway hyperresponsiveness (AHR) following allergen challenge is not well established. Using a rat model of allergen-induced ASM remodeling we explored the relationship between the site of ASM remodeling and AHR. Brown Norway rats, sensitized and challenged (3 times at 5-day intervals) with ovalbumin, were intranasally administered 0.1 mg/kg budesonide 24 and 1 h before challenge. Airway responses to aerosolized methacholine were assessed 48 h or 1 wk after three challenges. Airways were stained and analyzed for total airway wall area, area of smooth muscle-specific α-actin, and goblet cell hyperplasia, and the constant-phase model was used to resolve the changes in respiratory system mechanics into large airway and peripheral lung responses. After three ovalbumin challenges, there was a significant increase in ASM area and in the total wall area in all sized airways as well as an increase in goblet cells in the central airways. Budesonide inhibited ASM growth and central airway goblet cell hyperplasia following ovalbumin challenges. Budesonide also inhibited small but not large airway total wall area. AHR was attributable to excessive responses of the small airways, whereas responsiveness of the large airways was unchanged. Budesonide did not inhibit AHR after repeated challenge. We conclude that ASM remodeling induced by repeated allergen challenges involves the entire bronchial tree, whereas AHR reflects alterations in the lung periphery. Prevention of ASM remodeling by corticosteroid does not abrogate AHR.
منابع مشابه
The preventive effect of Brassica napus L. oil on pathophysiological changes of respiratory system in experimental asthmatic rat
Objective: Asthma is an airway complex disease defined by reversible airway narrowing and obstruction, chronic airway inflammation, airway hyperresponsiveness, and tissue remodeling. The purpose of this study was to determine the effect of Brassica napus L. (B. napus) on airway pathologic changes in a rat model of asthma. Materials and Methods: Twenty-four rats were divided into 4 groups: contr...
متن کاملThe contribution of L-selectin to airway hyperresponsiveness in chronic allergic airways disease
UNLABELLED L-selectin is a cell adhesion molecule, which mediates leukocyte rolling on bronchopulmonary endothelium. Previous studies in a murine model of allergic airways disease have shown that L-selectin plays a role in the regulation of airway hyperresponsiveness in asthma via mechanisms independent of inflammation. Airway remodeling has been shown to modulate airway hyperresponsiveness ind...
متن کاملCritical role of actin-associated proteins in smooth muscle contraction, cell proliferation, airway hyperresponsiveness and airway remodeling
Asthma is characterized by airway hyperresponsiveness and airway remodeling, which are largely attributed to increased airway smooth muscle contractility and cell proliferation. It is known that both chemical and mechanical stimulation regulates smooth muscle contraction. Recent studies suggest that contractile activation and mechanical stretch induce actin cytoskeletal remodeling in smooth mus...
متن کاملAn endothelin receptor antagonist, SB-217242, inhibits airway hyperresponsiveness in allergic mice.
Within the airways, endothelin-1 (ET-1) can exert a range of prominent effects, including airway smooth muscle contraction, bronchial obstruction, airway wall edema, and airway remodeling. ET-1 also possesses proinflammatory properties and contributes to the late-phase response in allergic airways. However, there is no direct evidence for the contribution of endogenous ET-1 to airway hyperrespo...
متن کاملTGF-ß1 Latency Associated Peptide Promotes Remodeling of Healing Cutaneous Wounds in the Rat
Background: The process of wound healing involves integrated events including inflammation, granulation tissue formation, matrix deposition and remodeling. Growth factors play a key role in the process. Among them transforming growth factor-ß1 (TGF-ß1) is known to accelerate tissue repair by promoting the synthesis and deposition of extracellular matrix proteins. However, persistence or overact...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 109 4 شماره
صفحات -
تاریخ انتشار 2010